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Abstract. Endoscopic videos have been widely used for stomach diag-
noses. It is of particular importance to obtain the 3D shapes, which
enables observations from different perspectives so as to facilitate com-
prehensive and accurate diagnoses. However, obtaining 3D shapes is chal-
lenging for traditional multi-view 3D reconstruction methods, due to
strong motion blurs, reflections, low spatial resolutions, non-rigid sur-
faces, and limited view angle shifts. In this work, we propose a mesh
regularization for shape recovery based on cues derived from Shape-
from-Shading (SfS). We recover shapes for all frames to generate a 3D
video. In particular, a 3D mesh is optimized for every frame according
to the 3D raw data obtained from SfS. Although the raw data con-
tains errors and temporal jitters, our spatially and temporally optimized
meshes can well approximate the underlying non-rigid surfaces, render-
ing temporally-stabilized meshes for 3D video display. Our experiments
demonstrate the effectiveness of our method on many challenging endo-
scopic videos.
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1 Introduction

Endoscopic videos have become the most reliable sources for observation and
diagnosis of gastrointestinal hollow organs. Various gastrointestinal symptoms
(such as inflammation, ulcers, and tumors) that cannot be diagnosed clinically
or by other interventional examinations (such as abdominal ultrasound, barium
meal, CT, and MRI) can be diagnosed by endoscopic approaches. Moreover,
endoscopic treatments (such as bleeding termination, polyps-removing, structure
dilation, abnormality removal, and removal of early cancer strippings) heavily
rely on the endoscopic observations. However, 2D endoscopic image sequences
taken by a common monocular endoscope lack 3D vision and depth perception.
Enabling 3D vision can improve the accuracy of diagnosis and treatments.1

1 Supplementary: http://www.liushuaicheng.org/ICIG/2017/SuppEndoscopic.mp4.
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(a) input (b) 3D points by SfS

(c) optimized mesh surface (d) mesh with textures

Fig. 1. (a) An input frame from an endoscopic video of a stomach. (b) 3D points
calculated by Shape-from-Shading (SfS). (c) Optimized mesh surface according to 3D
points. (d) Our final result by adding textures to (c).

The goal of our work is to recover the 3D shape of inner-surfaces as meshes
for all frames of an endoscopic video, such that the traditional 2D video can be
replaced by the 3D video that can be viewed from different 3D viewpoints, thus
offering a flexible visualization for reliable diagnosis.

Our work is built upon Shape-from-Shading (SfS) for the 3D surface recov-
ery. Okatani and Deguchi applied SfS to calculate 3D points based on different
shading properties [1]. There are two assumptions in [1]: a single light source
at the camera center and a Lambertian surface model. The former is naturally
satisfied as most of the endoscopes have a central light for illumination, but the
later is not always satisfied due to specular reflections from excretive liquid and
liquid bubbles. Thus, the estimated 3D points at these regions are inaccurate
or totally contaminated. We adopt a modified approach for 3D point clouds
recovery by detecting these regions in the image and skipping their problematic
3D points during mesh optimization. In particular, we propose to constrain the
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mesh edge lengths (the length between neighboring mesh vertices) during mesh
optimization. On one hand, the mesh is deformed obeying the SfS 3D points
as data constraints. On the other hand, it is encouraged to maintain rigidities
(e.g., a square mesh cell maintains the square shape after deformation). As a
result, a non-linear system is formulated, which can be minimized efficiently via
Gauss-Newton iterations.

We first recover the meshes for all frames independently. With regards to the
temporal smoothness, we borrow the idea of the video stabilization method [2] to
smooth meshes with a spatial-temporal optimization. As a result, the meshes not
only represent the shape of underlying organ surfaces, but also vary smoothly
to enable a vivid visualization.

(b)(a)

Fig. 2. (a) An endoscopic image with sampled source control points (yellow dots).
(b) Target control points obtained from SfS (red dots). (Color figure online)

2 Related Works

3D reconstruction methods are well documented in [3]. Sparse 3D points of a
scene can be reconstructed if multiple views are provided. Multi-view stereo
algorithms further upgrade sparse 3D points into dense 3D point clouds [4].
With regards to non-rigid shape reconstruction (recovery dynamic points from a
single camera), some methods [5,6] propose motion priors of the moving objects
while others [7–9] adopt matrix factorization approaches. 3D models are more
desired descriptions of structures compared to 3D point clouds. Various methods
have been proposed to model different objects/structures, including facades [10],
plants [11], hairs [12], and faces [13].

Mesh manipulations are utilized for 2D and 3D shape deformations.
Igarashi et al. proposed “as-rigid-as-possible” mesh warping for 2D shape manip-
ulations [14]. Some improvements have been made for detailed 2D shape preserv-
ing under large movements [15,16]. 3D mesh deformations are utilized for 3D
surface representations [17]. Sorkine et al. proposed a Laplacian surface editing
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method by enforcing coherence between neighboring mesh vertices [18]. How to
maintain 3D details has been reported in [19,20]. Our method is motivated by
the content-preserving warps [21], where we manipulate quads in the 3D space
for 3D organ surface representation.

Endoscopic modeling methods can be classified into two categories: Shape-
from-Shading [1,22,23] and Structure-from-Motion (SfM) [24,25]. Our method
belongs to the first category. Though some assumptions of SfS are violated, our
mesh deformation can compensate the inaccuracy and smooth the noise within
SfS 3D points.

Our method is also related to video stabilization [2,21,26]. For this task,
Liu et al. divided each video frame into a mesh and stabilized these meshes for
stabilization [2]. We follow the similar idea to enforce the temporal smoothness
of our surface meshes.

3 Our Method

In this section, we present our method for the 3D surface recovery. We first
introduce a pre-processing, which provides the pruned SfS 3D point clouds. Then,
we describe our method for mesh optimization.

3.1 Pre-processing

Endoscopic images usually contain many contaminated spots that violate the SfS
assumptions, leading to problematic 3D points. In Fig. 1(a), we can observe many
reflections due to gastric effusions. The recovered 3D points at these regions are
inaccurate, as can be seen in Fig. 1(b). These reflection spots are detected by
thresholding the image intensities. We then remove the 3D points that corre-
spond to specular regions. Specifically, we sample points for every five pixels to
produce our 3D raw data for the subsequent mesh optimization. The SfS cal-
culation is based on [22]. Figure 2 shows an example of our setting. The yellow
dots in Fig. 2(a) show the sampled control points that have zero height in the
source frame. The heights of these control points are calculated according to SfS
at the target frame (red dots in Fig. 2(b)). We want to place a 3D mesh on top
of these control points to represent the 3D shape.

3.2 Mesh Optimization

We define a uniform grid mesh as shown in Fig. 3(a). The control points are
denoted as {vp, v̂p}, where vp and v̂p denote the control points in the source
and target mesh, respectively. The mesh vertices in the source and target frame
are denoted as vm and v̂m, where the vm is known, but v̂m needs to be solved.
Notably, all the points are 3D vectors (x, y, z)T . In the source frame, z values
are zero.
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Fig. 3. Before and after mesh deformation. (a) The initialization is a flat source mesh.
(b) The deformed target mesh is obtained by our optimization. The control point vp in
the source mesh can be represented by its enclosing four grid vertices (v1m, v2m, v3m, v4m)
using bilinear interpolation. We use the same weights to represent the control point v̂p
in the target mesh by (v̂1m, v̂2m, v̂3m, v̂4m).

The deformed mesh should satisfy both data constraints from control
points [2] and smoothness constraints that maintain rigidity of mesh struc-
tures [16]. The proposed energy function is defined as:

E(V̂m) = Ed(V̂m) + αEs(V̂m), (1)

where α balances two terms, which is set to 1 in our implementation, and V̂m

represents the unknown mesh vertices.

Data constraints. In Fig. 3(a), the point vp can be represented by its enclosing
four vertices:

vp = (v1
m, v2

m, v3
m, v4

m) · (w1
m, w2

m, w3
m, w4

m)T . (2)

The same set of interpolation weights (w1
m, w2

m, w3
m, w4

m) is used for representa-
tion of the point v̂p in the target mesh:

v̂p = (v̂1
m, v̂2

m, v̂3
m, v̂4

m) · (w1
m, w2

m, w3
m, w4

m)T . (3)

The data constraint is defined as:

Ed(V̂m) =
∑

p

‖v̂mp
wp − v̂p‖, (4)

where v̂mp
and wp denote four vertices enclosing v̂p and the corresponding four

interpolation weights, respectively. Equation (4) can be rewritten into matrix
form:

Ed(V̂m) = ‖WV̂m − V̂p‖, (5)

where W is an n×m matrix with n equals to the number of the control points.

Smoothness constraints. We propose to constrain the edge lengths between
adjacent vertices for the mesh rigidity. All edges from mesh cells produce an
edge set Ωe. The energy function is defined as:
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Es(V̂m) =
∑

(i,j)∈Ωe,i �=j

‖(V̂mi
− V̂mj

) − e(V̂mi
, V̂mj

)‖2, (6)

where e(V̂mi
, V̂mj

) =
˜li,j
li,j

(V̂mi
−V̂mj

), li,j is the current length of edge between

neighboring vertices v̂mi
and v̂mj

, and l̃i,j is the original length. Likewise, Eq. (6)
can be rewritten into matrix form:

Es(V̂m) = ‖LV̂m − e(V̂m)‖2, (7)

where L is a |Ωe|×m matrix and |Ωe| denotes the number of edges. Bringing
Eqs. (5) and (7) into Eq. (1), we have:

Etotal(V̂m) = ‖WV̂m − V̂p‖2 + α‖LV̂m − e(V̂m)‖2. (8)

Optimizing the energy function in Eq. (8) gives the unknown mesh vertices V̂m.
We set α = 1 in our implementation.

Optimization. Equation (8) can be reformulated as:

minV̂m
‖AV̂m − b(V̂m)‖2 (9)

where

A =
(

αW
βL

)
,b(V̂m) =

(
αV̂p

βe(V̂m)

)
. (10)

Note that both A and V̂p can be determined beforehand and are fixed during
deformation, while b is dependent on the current point positions V̂m. Therefore,
this is a nonlinear least squares problem. We utilize an iterative Gauss-Newton
method [27] in which Eq. (9) is interpreted as:

min
V̂

k+1
m

‖AV̂
k+1

m − b(V̂
k

m)‖2, (11)

where V̂
k

m is the vertex positions solved from the k-th iteration and V̂
k+1

m is to

be solved at the iteration k + 1, respectively. Given that b(V̂
k

m) is known at the
current iteration, Eq. (11) can be solved by a standard linear least square solver:

V̂
k+1

m = (ATA)−1ATb(V̂
k

m). (12)

We update b(V̂
k

m) during each iteration until V̂m converges to a relatively

stable matrix. Namely, we need to update e(V̂
k

m) according to:

e(V̂
k

mi
, V̂

k

mj
) =

l̃i,j

|V̂k

mi
− V̂

k

mj
|
(V̂

k

mi
− V̂

k

mj
). (13)

Empirically, 3–4 iterations converge to a stable solution (Fig. 4).
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Fig. 4. Smoothing of recovered meshes. At frame t, a homography Fi(t) for the cell
i is estimated between adjacent mesh cells using 8 corresponding mesh vertices. The
smoothing is conducted by a spatial-temporal optimization [2].

3.3 Temporal Smoothness

So far, we have presented the solution for mesh deformation at each frame, where
the temporal smoothness has not yet been considered. The 3D raw data from
SfS not only contains noises in spatial but also jitters in temporal. Therefore,
we propose to filter the mesh vertices after all meshes being solved. We notice
that the video stabilization method [2] fits well to this case and thus is adopted
here for the spatial-temporal meshes smoothing.

Figure 5 shows the configuration after obtaining meshes for all frames. At
time t, a local homography Fi(t) of a cell i is estimated using 8 corresponding cell
vertices, namely, {v1

m(t), v2
m(t), v3

m(t), v4
m(t)} and {v1

m(t−1), v2
m(t−1), v3

m(t−1),
v4

m(t − 1)}. We estimate Fi for all frames and for mesh cells. Chaining all Fi for
cell i of all frames defines a local path:

Ci(t) = Fi(t)Fi(t − 1)...Fi(1)Fi(0), Fi(0) = I, (14)

where Ci(t) is often referred to as a camera path in the context of video sta-
bilization. Optimizing the following energy function gives the smoothed local
path Pi:

∑

t

∑

i

( ∑

r∈Φt

ωt,r · ‖Pi(t) − Pi(r)‖2 +
∑

j∈N(i)

‖Pi(t) − Pj(t)‖2
)
, (15)

where Φt denotes the neighborhood at frame t and N(i) includes eight neighbors
of the grid cell i.

The first term smooths local paths while the second one enforces spatial simi-
larities of local paths. Equation (15) is quadratic and can be minimized efficiently
by linear system solvers. A local update transform Bi(t) (Bi(t) = Ci(t)P (t)) is
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a b c d e f

Fig. 5. Each column shows one example. Four rows show the original frame, 3D raw
data from SfS, our optimized mesh, and textures placed onto the mesh.

obtained for each cell. Applying Bi(t) to the corresponding vertices leads them
to the smoothed positions. Each vertex receives four smoothed positions as it is
shared by four cells (boundary vertices have fewer smoothed positions). For a
vertex, we take the average of these positions to get its final position.

4 Results

We implemented our system using C++. We run our method on a laptop with
Intel i7-5500U 2.4 GHz Core(TM) and 8 GB RAM. It takes only 1 s to reconstruct
a frame, in which SfS, mesh optimization, and smoothing take 0.2, 0.7, and
0.1 s, respectively. The input image has resolution of 306× 370 pixels. The mesh
resolution is 32 × 32. Some results are presented in Fig. 5. Each column shows
an example where the original frame, SfS 3D points, optimized mesh, and the
final textured results are placed on each row.

Note that Examples (a) and (b) are different frames from the same endo-
scopic video, and so are Examples (d) and (e). Our optimization manipulates
mesh quads, but we draw a quad into two triangles for a clear illustration. We
can view the 3D structures under different perspectives. Here, only one perspec-
tive is selected for each example due to the limited space. Please refer to our
supplementary file for the 3D videos of these examples as well as other results.
In our experiments, some examples contain tissues moving outwards (Fig. 5(a),
(b), and (c)) and some examples contain hollow pipes (Fig. 5(d), (e), and (f)).
Our reconstructed shapes can represent all these structures faithfully.
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Lastly, we would like to state that our recovered 3D shape is not a metric 3D
reconstruction, because SfS itself is not a metric reconstruction and the stabi-
lization changes the values of vertices non-physically. Moreover, it is challenging
to obtain ground-truth data so as to conduct a quantitative evaluation. Our goal
in this work is to grab the shapes of the underlying real surfaces and deliver a
flexible 3D view for a clearer visualization.

5 Conclusions

We have presented a method to recover the inner-surface’s shape of organs from
endoscopic videos. Specifically, we compute 3D raw point clouds from SfS and
optimized a mesh to fit to these point clouds to represent the shape of underlying
surfaces. We deform a mesh for each frame. All meshes of frames are stabilized
by a spatial-temporal optimization for the temporal smoothness. As a result, a
3D video is generated which can be viewed under different viewpoints. Various
challenging examples validate the effectiveness of our proposed method.
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