
MESHFLOW VIDEO DENOISING

Zhihang Ren, Jiajia Li, Shuaicheng Liu, Bing Zeng

School of Electronic Engineering
University of Electronic Science and Technology of China, Chengdu, China

ABSTRACT

We propose an efficient video denoising approach that pro-

duces clean videos by utilizing the recently proposed mesh-

flow motion model for the camera motion compensation.

The meshflow is a spatially-smooth sparse motion field with

motion vectors located at the mesh vertexes. The model

is very effective and efficient for the purpose of the multi-

frames denoising due to its internal characteristics such as

the lightweight, the nonparametric form, and the spatially-

variant motion representation. Specifically, the meshflows

are estimated between adjacent frames, which are used to

align frames within a sliding time window. A denoised frame

is generated by fusing of several registered frames in a s-

patial and temporal manner with outlier rejections. Various

challenging examples demonstrate the effectiveness and prac-

ticability of the proposed approach.

Index Terms— Video denoising, meshflow.

1. INTRODUCTION

Videos captured in a low-light environment often suffer from

strong noises that severely decrease the quality of videos. Im-

age/video denoising approaches [1, 2, 3, 4, 5] aim at remov-

ing or suppressing noises for the video quality improvement.

Some methods explore the sparsity of a multiresolution repre-

sentation in the wavelet domain [6, 7] or utilize the non-local

measurements for restorations [8, 9]. In general, multiple im-

age denoising is superior to single image denoising as more

observations are provided. Video frames often contain com-

plementary information that can be fused for the strong de-

noising [10, 11]. In this work, we aim at the video denoising

with videos captured by hand-held cameras. Please refer the

project page for the videos and results1.

Typically, there are two challenges with respect to a prac-

tical video denoising, i.e., the camera motion compensation

and the handling of outliers during the temporal pixels fus-

ing. The former refers to the image registration between adja-

cent video frames. As the camera is not stationary during the

capturing, accurate motion estimations can increase the per-

formance of various applications, such as the HDR [12], the

video deblurring [13] and the video stabilization [14]. The

1Project page: http://www.liushuaicheng.org/ICIP/2017/index.html

latter can suppress the artifacts (e.g., ghosting) introduced by

misalignments, which may be caused by various reasons, in-

cluding dynamic objects, occlusions and insufficient descrip-

tions of the motion model (e.g., a single homography).

Liu et al. proposed a multi-frame denoising approach that

merges several images captured by a cell-phone burst mod-

el to a clean denoised image [15]. A parametric pyramid

homography-flow motion model was proposed for the image

sequence alignment. The denoised result was synthesized by

a multiscale-based spatial-temporal fusing with the consistent

pixel verification. More recently, Liu et al. proposed a mesh-

flow motion model for the video stabilization [16]. The mesh-

flow is a non-parametric motion model, which consists of the

sparse motion vectors located on the vertexes of a grid mesh.

Inspired from these two works, we propose to use mesh-

flow motion model for the video denoising. Compared with

multiscale homography-flows, the estimation of the meshflow

does not require the hierarchical structures and the level-by-

level optimizations, which is more efficient and convenien-

t, yielding comparable results if not superior. Based on the

meshflow, we utilize the concepts of pixel-profiles [17, 18]

instead of adopting real motion trajectories, for the efficient

motion accumulation and the consistent pixels identification.

By combining several novelties, we present a video denois-

ing framework that not only runs efficiently but also produces

high quality results when compared with the state-of-the-art

methods, such as BM3D [5], VBM3D [19], BM4D [20], VB-

M4D [21] and Burst [15].

2. MESHFLOW DENOISING

Figure 1 shows our pipeline. For a given input noisy video,

we estimate the meshflow (Sec. 2.1) between adjacent frames.

To denoise a frame, we move a temporal window along the

video with a radius of 5 frames. Frames within the window

are warped towards the central frame according to the estimat-

ed motions by the meshflow (Sec. 2.2). With all the frames

aligned to the central frame within the local window, we fuse

them to denoise the central frame. The fusing includes the

identification of outlier pixels. In Fig. 1(c), the green and the

red dots denote inlier and outlier pixels. Details regarding the

consistency check and the fusing process will be discussed in

Sec. 2.3. The window is moved forward by one frame at each

time and the video is denoised frame by frame.



Fig. 1. Our system pipeline. (a) The input noisy video. (b) The meshflow is estimated between adjacent frames. (c) All the

neighboring frames within a local temporal window are warped towards the central frame according to the meshflow. The

denoised frame is generated by fusing of warped frames with consistent pixels identification. (d) The video is denoised frame

by frame with a moving temporal window.

(a) (b)

Fig. 2. Meshflow motion model. (a) We show two matched

feature pairs. The arrow indicates the motion. (b) Motion of

a feature point is propagated to the nearby vertexes.

2.1. Meshflow Motion Model

The meshflow is a sparse motion field. It is often used to

estimate motions between neighboring frames, which is orig-

inally proposed in [16]. We introduce the meshflow in this

section for the sake of completeness.

Rich Features. We detect FAST image features [22] and

track them by KLT [23] to the adjacent frame. The mesh-

flow estimation prefers an uniform and dense feature cover-

age. Therefore, the detection threshold is tuned locally and

automatically for different image regions. More details re-

garding the rich feature pruning can be found in [24].

Motion Propagation. Each matched pair of features yields a

motion vector as shown in Fig. 2(a). In our implementation,

we calculate motions between a current frame and its previ-

ous frame. A regular mesh is placed onto the current frame

and the motion at the feature point is duplicated to the near-

by mesh vertexes as shown in Fig. 2(b). Notably, some of

the vertexes may receive multiple motion vectors contributed

from different feature points.

Median Filters. Each mesh vertex should only have one u-

nique motion vector, which is picked from the motion candi-

dates at each vertex by a median filter. Another median filter

is applied spatially to reject motion outliers caused by mis-

matched features and dynamic objects. To this end, we obtain

a smoothly varying sparse motion field. More discussions can

be found in [16].

Notations. As we calculate the motions backward, the mesh-

Fig. 3. Motion tracks (red) versus pixel profiles (green). We

adopt pixel profiles for the motion accumulation.

flow at frame t is denoted as Ft with motions pointing from

frame t to frame t − 1. The meshflow at the first frame is set

to 0.

2.2. Motions Accumulation

Figure 3 shows an example of motion tracking and motion

accumulation. To denoise frame t (Fig. 3 red frame border),

we need to warp the neighboring frames (Fig. 3 blue frame

border) towards the central frame t. For example, we want

to warp frame t − 2 to frame t. One solution is to estimate

meshflow directly between them. But it is not efficient as it

introduces extra feature detection and tracking. Our solution

is to use previously estimated adjacent meshflow Ft to ap-

proximate the non-adjacent jumps.

There are two choices. Intuitively, we should trace the

motion path to form a motion track (Fig. 3 red squares). How-

ever, there are some problems such as the tracks can move

outside of a frame. Moreover, we need to check the values

of tracks to decide the subsequent locations, which is ineffi-

cient. Our solution is to adopt the pixel-profile strategy [17].

A pixel profile collects motion vectors at a fixed spatial loca-

tion along the time (Fig. 3 green squares). It is shown in [17]

that the motions at the pixel-profile is a very good approxi-

mation of the corresponding motion track. Profiles can lead

to several advantages such as full coverage (no border issues)

and parallel computing (each pixel location is computed in-

dependently). Therefore, we adopt the profiles to accumulate



Fig. 4. With and without consistency check. Please notice the

ghosting effects in the left example of without consistency.

adjacent motions for the non-adjacent frames:

P t
s =

{ −∑t
i=s Fi, if s < t∑t
i=s Fi, if s > t

(1)

where s and t are frame index and P t
s is a meshflow pointing

from s to t. Notably, the accumulations are conducted for

the sparse motion fields. We warp the images according to

the meshflow by a mesh-based image warp. To this end, all

frames within a local window are warped to the central frame.

2.3. Fusing

With all frames aligned to the target frame, we average the

pixels at the same spatial location for the denoising. Some

of the pixels cannot be averaged if they correspond to mis-

alignments, occlusions or dynamic objects. The fusing of

these inconsistent pixels can result in severe “ghosting” ef-

fects. For each pixel location, we compare the intensities of

the pixels at the target frame with the associated candidates

at the warped frames. Pixels with intensity difference small-

er than an empirical threshold τ = 20 (intensity ranges from

0∼255) are treated as consistent pixels. Other strategies have

been explored in [15]. Here, we keep our method simple yet

effective.

3. EXPERIMENTS

We conduct some experiments with respect to several aspects

to validate the effectiveness of our design.

Pixel consistency. Figure 4 shows a comparison with regards

to with and without consistency verification in the denoising

results. Please notice the ghosting effects of the moving per-

son highlighted by the red arrow.

Motion accumulation. Figure 5 shows a comparison be-

tween direct motion calculation and motion accumulation as

discussed in Sec. 2.2. Both methods can produce comparable

results. However, the direct calculation requires additional

feature detection and tracking between non-adjacent frames.

Panning and Walking We test our performances on various

camera motion types. The videos captured during panning

and walking are more challenging than those filmed without

large camera movements. Because fewer frames can be reg-

isted within the local window due to the scene variation. By

experiments, we show that our method can successfully han-

dle these camera movements.

Fig. 5. Comparison between direct motion calculation and

motion accumulation. Both approaches yield similar results.

4. RESULTS

We run our method on an Intel i7 4.0GHz CPU with 16G

RAM. Our unoptimized C++ implementation can achieve

260ms on average to process a frame with resolution of

1920 × 1080. Specifically, our method takes 27ms, 21ms,

38ms, 25ms and 149ms to track features, estimate mesh flow,

accumulate motion, check consistency and fuse pixels, re-

spectively. The method can be further accelerated by the

GPU, especially for the fusing which is highly parallelizable.

We compare our method with the methods BM3D [5],

VBM3D [19], BM4D [20], VBM4D [21] and Burst [15]. All

these methods are quite slow. They usually need more than

a minute to process a frame, except the burst denoising [15],

which reports the speed as 480ms to process a frame under the

similar image resolution. Fig. 6 shows some results. Resid-

ual noises can still be observed in the compared examples.

Please notice the missing of the electric wire in the first ex-

ample. The temporal issues of the compared examples can be

viewed in the accompany video.

We collect some data from the project page of the burst

denoising [15] for comparisons. Fig. 7 shows two examples.

The burst denoising approach targets at the image denoising,

where 10 noisy images are the input to the system and 1 clean

image is the output. We generate our results with the same

inputs as [15]. Our method can produce comparable results.

Notably, the pixel consistency strategy of [15] tends to reject

moving objects, which maybe reasonable when the output is

a single image. Whereas, our video denoising must keep the

dynamic objects as illustrated in the right example of Fig. 7.

5. CONCLUSION

We have presented a method that utilizes meshflow motion

model for the video denoising. With the motion accumu-

lations and the pixel consistency verification, our method

can achieve strong denoising results under a very fast speed.

Our method is robust to different type of camera motions

and scene types. Various challenging cases demonstrate the

effectiveness of the proposed method.

6. ACKNOWLEDGE

This work has been supported by National Natural Science

Foundation of China (61502079 and 61370148).



Fig. 6. Comparisons with various methods, including (b) BM3D [5], (c) VBM3D [19], (d) BM4D [20] and (e) VBM4D [21].

Please zoom in for clearer comparisons and refer to the video for comparisons of the temporal consistencies. Our method can

keep image details as highlighted by the rectangle in the first example while suppress the noises effectively as highlighted in

the second example.

Fig. 7. Comparison with the Burst image denoising approach [15]. The examples are collected form the datapage of [15]. Our

method can produce comparable results with improved efficiency. Moreover, in the right example, our method can keep the

dynamic moving person, which is missing in [15], as highlighted by the red arrow.



References
[1] P. Chatterjee, N. Joshi, S. Kang, and Y. Matsushita,

“Noise suppression in low-light images through join-

t denoising and demosaicing,” in Proc. CVPR, 2011,

pp. 321–328.

[2] J. Chen, C. Tang, and J. Wang, “Noise brush: interac-

tive high quality image-noise separation,” ACM Trans.
Graph., vol. 28, no. 5, pp. 146, 2009.

[3] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazari-

an, “Color image denoising via sparse 3d collabo-

rative filtering with grouping constraint in luminance-

chrominance space,” in Proc. ICIP, 2007, vol. 1, pp.

I–313.

[4] X. Chen, B. Sing, J. Yang, and J. Yu, “Fast patch-based

denoising using approximated patch geodesic paths,” in

Proc. CVPR, 2013, pp. 1211–1218.

[5] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Im-

age denoising by sparse 3-d transform-domain collabo-

rative filtering,” IEEE Trans. on Image Processing, vol.

16, no. 8, pp. 2080–2095, 2007.

[6] E. Balster, Y. Zheng, and R. Ewing, “Combined spatial

and temporal domain wavelet shrinkage algorithm for

video denoising,” IEEE Trans. on Circuits and Syst. for
Video Tech., vol. 16, no. 2, pp. 220–230, 2006.

[7] V. Zlokolica, A. Pizurica, and W. Philips, “Wavelet-

domain video denoising based on reliability measures,”

IEEE Trans. on Circuits and Syst. for Video Tech., vol.

16, no. 8, pp. 993–1007, 2006.

[8] A. Buades, B. Coll, and J. Morel, “A non-local algorith-

m for image denoising,” in Proc. CVPR, 2005, vol. 2,

pp. 60–65.

[9] A. Buades, B. Coll, and J. Morel, “A review of image

denoising algorithms, with a new one,” Multiscale Mod-
eling & Simulation, vol. 4, no. 2, pp. 490–530, 2005.

[10] J. Chen and C. Tang, “Spatio-temporal markov random

field for video denoising,” in Proc. CVPR, 2007, pp.

1–8.

[11] N. Kalantari, E. Shechtman, C. Barnes, S. Darabi, D. B

Goldman, and P. Sen, “Patch-based high dynamic range

video,” ACM Trans. Graph., vol. 32, no. 6, pp. 202,

2013.

[12] M. Granados, K. Kim, J. Tompkin, and C. Theobalt,

“Automatic noise modeling for ghost-free hdr recon-

struction,” ACM Trans. Graph., vol. 32, no. 6, pp. 201,

2013.

[13] F. Tan, S. Liu, L. Zeng, and B. Zeng, “Kernel-free

video deblurring via synthesis,” in Proc. ICIP, 2016,

pp. 2683–2687.

[14] S. Liu, L. Yuan, P. Tan, and J. Sun, “Bundled camera

paths for video stabilization,” ACM Trans. Graph., vol.

32, no. 4, pp. 78, 2013.

[15] Z. Liu, L. Yuan, X. Tang, M. Uyttendaele, and J. Sun,

“Fast burst images denoising,” ACM Trans. Graph., vol.

33, no. 6, pp. 232, 2014.

[16] S. Liu, P. Tan, L. Yuan, J. Sun, and B. Zeng, “Meshflow:

Minimum latency online video stabilization,” in Proc.
ECCV, 2016, pp. 800–815.

[17] S. Liu, L. Yuan, P. Tan, and J. Sun, “Steadyflow: S-

patially smooth optical flow for video stabilization,” in

Proc. CVPR, 2014, pp. 4209–4216.

[18] S. Liu, M. Li, S. Zhu, and B. Zeng, “Codingflow: En-

able video coding for video stabilization,” IEEE Tran-
s. on Image Processing, vol. 26, no. 7, pp. 3291–3302,

2017.

[19] K. Dabov, A. Foi, and K. Egiazarian, “Video denoising

by sparse 3d transform-domain collaborative filtering,”

in In Proc. European Signal Process. Conf. EUSIPCO,

2007.

[20] M. Maggioni, V. Katkovnik, K. Egiazarian, and A. Foi,

“Nonlocal transform-domain filter for volumetric data

denoising and reconstruction,” IEEE Trans. on Image
Processing, vol. 22, no. 1, pp. 119–133, 2013.

[21] M. Maggioni, G. Boracchi, A. Foi, and K. Egiazari-

an, “Video denoising, deblocking, and enhancemen-

t through separable 4-d nonlocal spatiotemporal trans-

forms,” IEEE Trans. on Image Processing, vol. 21, no.

9, pp. 3952–3966, 2012.

[22] M. Trajković and M. Hedley, “Fast corner detection,”

Image and vision computing, vol. 16, no. 2, pp. 75–87,

1998.

[23] J. Shi and C. Tomasi, “Good features to track,” in Proc.
CVPR, 1994, pp. 593–600.

[24] H. Guo, S. Liu, T. He, S. Zhu, B. Zeng, and M. Gabbou-

j, “Joint video stitching and stabilization from moving

cameras,” IEEE Trans. on Image Processing, vol. 25,

no. 11, pp. 5491–5503, 2016.


