
CODING TRAJECTORY: ENABLE VIDEO CODING FOR VIDEO DENOISING

Zhihang Ren, Peng Dai, Shuaicheng Liu, Shuyuan Zhu, Bing Zeng

Institute of Image Processing
University of Electronic Science and Technology of China

ABSTRACT

We introduce a novel video denoising approach which can

produce a clean video by utilizing redundant image patch-

es existed in the video frames. Previous multi-frame video

denosing approaches either require image registration or em-

ploy Patch Match algorithms for the discovery of the patch re-

dundancy. However, these computations are time-consuming

and prone to errors. On the other hand, nearly all captured

videos have been compressed. Such a compression can pro-

duce a rich set of block-based motion vectors that can be u-

tilized for the redundant patch extraction, leading to the effi-

cient video denosing. To be specific, the motion vectors and

frame references can be obtained from the video coding. Giv-

en a noised frame block, we follow its motion vectors from

the coding to form a trajectory and gather a set of block candi-

dates along the routes from its nearby frames. The trajectory

is referred to as Coding Trajectory. Then, the corresponding

denoised block is generated by weighted fusing the block can-

didates with outlier rejections. A denoised frame is consist-

ed of all the denoised blocks. We compare our method with

several state-of-the-art approaches, such as VBM3D and VB-

M4D, in terms of PSNR and SSIM. The experiments show

that our method can achieve high quality results while runs

much faster then the other approaches.

Index Terms— Video Coding, video denoising, coding

trajectory

1. INTRODUCTION

Video denosing is a classic problem that has attracted lot-

s of attentions from the research community during the past

decades [1, 2, 3, 4] . Videos captured in a dimly-lit environ-

ment often suffer from strong noises that severely lowers the

quality of the videos. Video denoising approaches target at

reducing the noises such that the video quality can be largely

improved. With respect to the multi-frame video denosing,

Liu et al. proposed to denoise one image by several images

that being captured by a cell-phone under the burst mode [5].

Ren et al. proposed to denoise videos by exploring the frame

registration using mesh-based motion models [6]. 1

1http://www.liushuaicheng.org/ICIP/2018/CodingTrajectory.mp4

In general, the challenge of a practical video denosing

method lies in two aspects. First, the quick discovery of sim-

ilar image patches resided in nearby adjacent video frames.

Second, the robust patch fusing for denoising with outlier re-

jection. Previous approaches [5, 6] often extract patches with

similar contents from aligned sequence. However, the align-

ment requires detecting image features [7] and manipulate

motion models, such as the homography-flow motion model

proposed in [5] and the meshflow motion model [8] adopted

in [6]. The image alignment is time consuming and prone to

errors in many consumer level videos. The alignment is im-

portant for some applications such as the video deblurring [9],

the HDR [10] and the video stabilization [11]. With respect to

the video denosing, however, it is unnecessary to extract sim-

ilar patches by aligning images. The similar patches can be

found by search around the frame and adjacent frames using

the PatchMatch [12, 13, 14].

In this paper, instead of conducting PatchMatch which

still requires some computations, we directly use the block

motion vectors extracted from the video coding. The video

coding aims at removing spatial and temporal redundancies of

the raw video data. Nearly all captured videos have been com-

pressed before the storage and the distribution. However, after

the decoding, the block motion vectors are usually discard-

ed. We notice that these motion vectors can effectively link

similar patches across different frames for the video denos-

ing. Specifically, given a patch, we collect a set of patches

by following the routes of motion trajectories embedded in

the video coding. Both B-frame and P-frame in the video

coding can come up with trajectories, which yields sufficient

number of patches for the denoising. We fuse these patch-

es with weights derived from patch similarities. We further

reject inconsistent pixels caused by dynamic contents. In this

way, the video can be denoised with a very low computational

cost. Moreover, it is convenient to implement the method into

various platforms (such as the embedded systems), because

the coding unit is almost compulsory as long as the platfor-

m supports video applications. Various challenging examples

demonstrate the effectiveness of the proposed method.

The rest of the paper is arranged as follows. Section 2 re-

views the related work. Section 3.1 and Section 3.2 illustrate

our algorithm in detail. In Section 4, the experimental result-

s are demonstrated and discussed. In particular, the results

3224978-1-4799-7061-2/18/$31.00 ©2018 IEEE ICIP 2018

of classical algorithms are put into comparison to illustrate

the efficiency and quality of our algorithm. Finally, Section 5

concludes this paper.

2. RELATED WORKS

2.1. Video Coding

Video coding aims at compressing the data size by removing

the redundancies (spatial and temporal) in the raw video data.

The intra coding and the inter coding are designed to remove

such redundancies. Specifically, this removing operation is

block based. In both coding modes, each image block is usu-

ally compressed by the discrete cosine transform (DCT) [15],

quantization, and entropy coding.

In the redundancy-removing procedure, DCT is even

more important as it transforms the pixel domain into the

frequency domain, in which the block energy is much more

compacted into only a few coefficients. In order to further im-

prove the performance, recently, several new transforms, such

as the directional DCT (DDCT) [16] and some novel unitary

transforms [17], have been proposed. Meanwhile, the integer

DCT [18] has been developed to support the hardware-based

implementation.

At the same time, it has been convinced that the motion-

compensated prediction (MCP) [19] could largely promote

the efficiency of the temporal redundancies removing. Thus,

MCP has been adopted in all video codecs to construct the

inter coding mode. The motion estimation (ME) searches for

the best MV. The most obvious method to find the optimal

MV is to do a tedious search. Therefore, to solve this prob-

lem, lot of algorithms have been developed, such as the three-

step search (TSS) [20], the fourstep search (4SS) [21], and the

diamond-shaped search [22].

2.2. Video Denoising

Image/video denoising approaches [1, 2, 3, 4] focus on re-

moving or suppressing noises for the video quality improve-

ment. Some methods adopted non-local measurements for

the image restoration [14] while others explore the sparsity of

a multiresolution representation in the wavelet domain [23].

In general, multiple image denoising can provide superior re-

sults compared with single image approaches as more obser-

vations are provided. Video frames often contain complemen-

tary information that can be merged for denoising [24].

With respect to the single image approach, the BM3D

algorithm utilized a sliding-window manner and block-

matching to form 3D arrays. Then it denoised the image

by filtering it in a 3D transform domain [4]. The VBM3D

method [25] extended the BM3D approach to denoise the

videos. Based on the highly sparse signal representation in

a local 3D transform domain, the VBM3D algorithm could

denoise videos efficiently by aggregating the matched blocks

as weighted averages. The BM4D method utilized cubes

Fig. 1. Coding Trajectory. Different colors indicate different

trajectories. (large grid size for clearer illustration).

of voxels, which could be stacked into a four-dimensional

group, and jointly be filtered in the transformed domain [26].

The VBM4D [27] achieved the high quality performance by

tracking the motion vectors of matched blocks and staking

them along the trajectory. The results could be obtained by

the collaborative filtering. Different from the VBM4D, we

directly obtain motion vectors embedded in the video coding

for an efficient solution.

3. OUR METHOD

We describe our approach based on the H.264/AVC frame-

work for the convenience of its relatively simpler structure as

compared with the H.265/HEVC framework. Note that the

same processing is also hold for the H.265/HEVC.

3.1. Block Tracking

There are three types of frames in the video coding, including

I-frame, P-frame and B-frame. The I-frame is regarded as

the starting frame, which is referred by the P-frame and the

B-frame. The P-frame can only refer to its previous frames

while the B-frame can go either directions. In our case, the

first video frame is set to I-frame and we alow both P-frame

and B-frame references.

In H.264/AVC, each frame is processed in units of mac-

roblocks with size 16ˆ 16. Each macroblock can be encoded

with intra or inter mode. A tree-structured motion compen-

sation strategy is supported, where each macroblock can be

further divided into smaller sizes, including 16 ˆ 8, 8 ˆ 16,

8 ˆ 8, 8 ˆ 4, 4 ˆ 8 and 4 ˆ 4. The divison is performed by

the encoder using a rate-distortion optimization (RDO). For

image regions with less textures, a large division may be de-

sired to decrease the coding bits while for regions with rich

textures, a smaller decision is required to capture the image

details. In our implementation, we always fix the units divi-

sion as the smallest 4 ˆ 4. If a block have a larger size, we

duplicate its motion vector and assign them to its containing

3225

4ˆ4 blocks. The fixed 4ˆ4 division is convenient to generate

the coding trajectory.

Figure 1 shows an example of the block tracking as well

as the coding trajectory. After receiving the compressed bit-

stream, we can easily extract all motion vectors, with infor-

mation such as its referenced frame and its motion direction

and magnitude. As shown in Fig. 1, each block can refer to

its previous frame (P-frame and B-frame) and its future frame

(B-frame). Starting from a block, we trace its motion to the

next block and push blocks along the trail into our block can-

didate list. For blocks which contains two motions, we ran-

domly chose one of them to form our trajectory. Note that,

the motion vector is an integer value and cannot be exactly

landed within the block center. When we conduct the ‘jump’,

the next motion vector should take the bilinear interpolation

of the motion vectors from its surrounding four blocks. In

our implementation, we jump 6 times to collect 6 patch can-

didates.

Sometimes, the interpolated motion vector may jump out-

side the frame border (the red arrow shown in Fig. 1). In such

cases, the tracking should be terminated. Moreover, there are

also chances that the tracking may touch the border of the

video (the first frame or the last frame). For these situations,

the tracking should also be terminated.

3.2. Fusing

3.2.1. Block weights

Block tracking in Section 3.1 illustrates how to form coding

trajectories to collect the block candidates. In this section, the

fusing strategy will be described, including the weight calcu-

lation based on the block similarity in terms of the SSIM and

the pixel consistency verification.

Given the target noise block, the tracked candidates may

not be the blocks with the very similar contents due to the

interferences of the noises. Fusing these inaccurate blocks

could result in many uncomfortable effects, such as the ghost-

ing and the blurring of the structures. Therefore, during the

block fusing, the weights of the candidate blocks should be

carefully designed so that the artifacts could be attenuated. In

our algorithm, we choose the structural similarity index (S-

SIM) to indicate the similarity of the candidate block with the

target block.

More specifically, the range of SSIM is within ´1 and 1,

in which the value 1 is only reachable in the case of two iden-

tical blocks. The positive value means these two blocks are

positively correlated and vice versa. The magnitude of the S-

SIM indicates the correlated level in a positive manner, where

1 indicates identical and 0 indicates independent. More de-

tailed properties and the proof of SSIM bound could be found

in [28]. In our algorithm, due to the presence of the strong

noise, the SSIM is always below 1. And according to the ex-

periments, most SSIMs fall into the positive range. We com-

pare the candidate block and the target block in terms of the

Without Consistency With Consistency

Fig. 2. Without (left) and with (right) consistency check.

Please notice the strong ghosting effects in the left example

of without the consistency.

SSIM and assign the weight wb to the candidate according to

the following strategy:

ωb “
"

100 ˚ SSIM if SSIM ě 0
0.01 if SSIM ă 0

(1)

3.2.2. Consistency check

Although the coding trajectory is conducted for every 4 ˆ 4
blocks, we extract a relatively larger block size, 12ˆ12, from

the coding trajectory for the fusing. The bigger block size

can lead to larger overlaps, which give raise to higher capa-

bilities of the denoising after the fusing. We further add a

pixel-level consistent check upon the block-level weights for

the improved accuracy. The pixel-level consistent check can

better handle the dynamic objects, such as pedestrians, bicy-

cles and cars within the block, without which the ghosting

effects can be easily introduced. On the other hand, we might

avoid the artifacts by assigning the candidates with a lower

block weights. However, the lower block weights could de-

crease the effects of the denoising.

Specifically, we establish a threshold check for each pixel

in every candidate block. The threshold is set to 20 for each

channel of the pixel (pixel ranges from 0 „ 255). So, after the

consistency check, we can obtain a 12ˆ12 mask Ki. Finally,

the denoised block Bfinal is computed as:

Bfinal “
řN

i“0 ωbKiBiřN
i“0 ωbKi

, (2)

where B0 is the starting block, N is the tracking length and

Bi is the block after ith tracking. In our algorithm, the track-

ing length N is set to 6. Applying this operation for each

block in all video frames, we could eventually obtain the final

denoised result. Fig. 2 shows an example of with and with-

out the consistency check. Please notice the ghosting effects

of the moving person and flags, as well as the static building

highlighted by the red arrow.

4. RESULTS

We run our method on an Intel i7 3.4GHz CPU with 32G

RAM. Our unoptimized and unparalleled C++ implementa-

3226

σnoise “ 5 σnoise “ 10
flower salesman tennis flower salesman tennis

Ours 0.106 0.136 0.096 0.099 0.128 0.090

BM3D [4] 0.337 0.548 0.482 0.353 0.566 0.516

VBM3D [25] 1.32 2.30 1.80 1.11 2.26 1.71

BM4D [26] 87 105.6 85.5 87.5 104.9 87

VBM4D [27] 115.5 137.9 125.0 116.6 139.6 128.9

Table 1. Comparison of processing time (seconds) for various algorithms under different levels of noise.

tion can achieve 1620ms on average to process a frame with

resolution of 1280 ˆ 720. The method can be further accel-

erated by the GPU, especially for the extraction of motion

vectors and the fusing of candidate blocks which are highly

parallelizable. Specifically, we spend 437 ms for calculating

the SSIM weights, 485 ms for tracking the trajectory and con-

sistency check, 698 ms for candidates averaging, respectively.

Fig 4 gives a typical denoised result of our algorithm on real

life data. Please refer to the supplementary file for the visual

comparisons (the link at the first page).

Fig. 3. Examples in the evaluation.

We evaluate the performances on the synthetic data. (The

examples are synthesised by clear ground truth videos and the

Gaussian noise) Fig. 3 shows these examples. The resolutions

are 352 ˆ 240 for the ’flower’, 352 ˆ 288 for the ’salesman’,

352 ˆ 240 for the ’tennis’, and 352 ˆ 320 for the ’carpark’.

Fig. 4. An example of input (left) and denoised result (right).

4.1. Speed comparison

The results of running time for different methods on various

samples are summarized in Table 1. We synthesize noises in

two different levels in this experiment. As illustrated, our al-

gorithm shows the highest efficiency, with the speed tens and

hundreds of times faster than the speeds of the others. Note

that the resolution of the test data is quite small compared to

the real data which is much larger. Thus, our algorithm will

be far more efficient than those algorithms when processing

the real data.

4.2. Quality Comparison

We evaluate the performance on the example ’carpark’. We

calculate the PSNR and the SSIM for the objective compar-

ison. The results are reported in Fig. 5. As suggests, our

algorithm can achieve comparable performance while run-

ning much faster than the other approaches. Also, notably,

as shown in Fig 4, the denoising result is apparent(see the

white wall of the building and the yellow light).

Fig. 5. The objective comparisons with methods BM3D [4],

VBM3D [25], BM4D [26], VBM4D [27] in terms of the P-

SNR and the SSIM on the ’carpark’ example. We vary the

noise levels. The performance of our method is on par with

the other state-of-the-art methods.

5. CONCLUSION

We have presented a novel method that enables video coding

for video denoising. With the extracted Coding Trajectory

from the video coding, our method can achieve high quali-

ty results while maintaining a high efficiency. Various cases

demonstrate the robustness and the effectiveness of our pro-

posed method.

6. ACKNOWLEDGE

This work has been supported by National Natural Science

Foundation of China (61502079, 61672134 and 61720106004).

3227

References

[1] P. Chatterjee, N. Joshi, S. Kang, and Y. Matsushita,

“Noise suppression in low-light images through join-

t denoising and demosaicing,” in Proc. CVPR, 2011,

pp. 321–328.

[2] J. Chen, C. Tang, and J. Wang, “Noise brush: interac-

tive high quality image-noise separation,” ACM Trans.
Graph., vol. 28, no. 5, pp. 146, 2009.

[3] X. Chen, B. Sing, J. Yang, and J. Yu, “Fast patch-based

denoising using approximated patch geodesic paths,” in

Proc. CVPR, 2013, pp. 1211–1218.

[4] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Im-

age denoising by sparse 3-d transform-domain collabo-

rative filtering,” IEEE Trans. on Image Processing, vol.

16, no. 8, pp. 2080–2095, 2007.

[5] Z. Liu, L. Yuan, X. Tang, M. Uyttendaele, and J. Sun,

“Fast burst images denoising,” ACM Trans. Graph., vol.

33, no. 6, pp. 232, 2014.

[6] Z. Ren, J. Li, S. Liu, and B. Zeng, “Meshflow video

denoising,” in Proc. ICIP, 2017.

[7] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool, “Sur-

f: Speeded up robust features,” in Proc. ECCV, 2006,

pp. 404–417.

[8] S. Liu, P. Tan, L. Yuan, J. Sun, and B. Zeng, “Meshflow:

Minimum latency online video stabilization,” in Proc.
ECCV, 2016, pp. 800–815.

[9] S. Cho, J. Wang, and S. Lee, “Vdeo deblurring for hand-

held cameras using patch-based synthesis,” ACM Trans.
Graph., vol. 31, no. 4, pp. 64:1–64:9, 2012.

[10] M. Granados, K. Kim, J. Tompkin, and C. Theobalt,

“Automatic noise modeling for ghost-free hdr recon-

struction,” ACM Trans. Graph., vol. 32, no. 6, pp. 201,

2013.

[11] S. Liu, L. Yuan, P. Tan, and J. Sun, “Bundled camera

paths for video stabilization,” ACM Trans. Graph., vol.

32, no. 4, pp. 78, 2013.

[12] C. Barnes, F. Zhang, L. Lou, X. Wu, and S. Hu,

“Patchtable: efficient patch queries for large datasets

and applications,” ACM Trans. Graph., vol. 34, no. 4,

pp. 97, 2015.

[13] F. Tan, S. Liu, L. Zeng, and B. Zeng, “Kernel-free

video deblurring via synthesis,” in Proc. ICIP, 2016,

pp. 2683–2687.

[14] A. Buades, B. Coll, and J. Morel, “A non-local algorith-

m for image denoising,” in Proc. CVPR, 2005, vol. 2,

pp. 60–65.

[15] N. Ahmed, T. Natarajan, and K. Rao, “Discrete cosine

transform,” IEEE transactions on Computers, vol. 100,

no. 1, pp. 90–93, 1974.

[16] B. Zeng and J. Fu, “Directional discrete cosine trans-

formsła new framework for image coding,” IEEE Trans-
actions on Circuits and Systems for Video Technology,

vol. 18, no. 3, pp. 305–313, 2008.

[17] S. Zhu, S. Yeung, and B. Zeng, “In search of better-

than-dct unitary transforms for encoding of residual sig-

nals,” IEEE Signal Processing Letters, vol. 17, no. 11,

pp. 961–964, 2010.

[18] P. Meher, S. Park, B. Mohanty, K. Lim, and C. Yeo, “Ef-

ficient integer dct architectures for hevc,” IEEE Trans-
actions on Circuits and systems for Video Technology,

vol. 24, no. 1, pp. 168–178, 2014.

[19] Y. Taki, M. Hatori, and S. Tanaka, “Interframe cod-

ing that follows the motion,” Proc. Institute of Elec-
tronics and Communication Engineers Jpn. Annu. Con-
v.(IECEJ), p. 1263, 1974.

[20] T. Koga, “Motion-compensated interframe coding for

video conferencing,” in proc. NTC 81, 1981, pp. C9–6.

[21] L. Po and W. Ma, “A novel four-step search algorithm

for fast block motion estimation,” IEEE transactions on
circuits and systems for video technology, vol. 6, no. 3,

pp. 313–317, 1996.

[22] S. Zhu and K. Ma, “A new diamond search algorithm

for fast block matching motion estimation,” in Infor-
mation, Communications and Signal Processing, 1997.
ICICS., Proceedings of 1997 International Conference
on. IEEE, 1997, vol. 1, pp. 292–296.

[23] E. Balster, Y. Zheng, and R. Ewing, “Combined spatial

and temporal domain wavelet shrinkage algorithm for

video denoising,” IEEE Trans. on Circuits and Syst. for
Video Tech., vol. 16, no. 2, pp. 220–230, 2006.

[24] N. Kalantari, E. Shechtman, C. Barnes, S. Darabi, D. B

Goldman, and P. Sen, “Patch-based high dynamic range

video.,” ACM Trans. Graph., vol. 32, no. 6, pp. 202,

2013.

[25] K. Dabov, A. Foi, and K. Egiazarian, “Video denoising

by sparse 3d transform-domain collaborative filtering,”

in In Proc. European Signal Process. Conf. EUSIPCO,

2007.

[26] M. Maggioni, V. Katkovnik, K. Egiazarian, and A. Foi,

“Nonlocal transform-domain filter for volumetric data

denoising and reconstruction,” IEEE Trans. on Image
Processing, vol. 22, no. 1, pp. 119–133, 2013.

[27] M. Maggioni, G. Boracchi, A. Foi, and K. Egiazari-

an, “Video denoising, deblocking, and enhancemen-

t through separable 4-d nonlocal spatiotemporal trans-

forms,” IEEE Trans. on Image Processing, vol. 21, no.

9, pp. 3952–3966, 2012.

[28] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Im-

age quality assessment: from error visibility to struc-

tural similarity,” IEEE transactions on image process-
ing, vol. 13, no. 4, pp. 600–612, 2004.

3228

