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Abstract—Skin cancer is the most common malignancy in
developing countries. This is largely due to the lack of early
detection. The best method for early detection of skin cancer is
to track the changes in skin lesions. But, it is hard to implement
in developing countries due to the scarcity of experts and
their availability in remote areas. Teledermatology provides
a promising technology for monitoring skin cancer. Currently,
with the involvement of deep learning, teledermatology has
become more efficient. However, deep learning, and in par-
ticular supervised learning, requires a large amount of data,
while collecting and labeling skin lesion images is tedious and
requires a high degree of expertise. It is thus expensive to
collect enough labeled data to train deep neural networks
for skin cancer analysis. Recently, self-supervised learning has
proven itself useful for learning representations directly from
unlabeled images. Yet, for some rare diseases, e.g. Actinic
Keratosis, it is also infeasible to collect enough unlabeled im-
ages. In this paper, we utilize Generative Adversarial Network
(GAN) to generate synthetic unlabeled images which have
high semantic similarity with existing unlabeled medical data.
In particular, we evaluate the use of StyleGAN for the data
augmentation of skin cancer image self-supervised learning.
We utilized StyleGAN to generate new training samples which
have the same semantics as the original unlabeled training
images. We then combined the new GAN-generated samples
with the original unlabeled images as the new training dataset
for self-supervised learning. The self-supervised pre-trained
network is used as a fixed feature backbone for supervised
classification with a limited number of labeled skin cancer
images. Quantitative results confirm that our GAN-based data
augmentation can boost the accuracy of self-supervised skin
cancer image classification by 11.17% on BCN20000 and 3.07%
on HAM10000.
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I. INTRODUCTION

Skin cancer is increasingly becoming a public health
concern. It is the most common cancer in many countries
including the United States [1], [2]. In certain developing
countries, e.g. Brazil, the situation is even worse [3]. Cur-
rently, the best method for early detection of skin cancer
is to track the changes in skin lesions. But it is hard to
implement in developing countries due to the scarcity of
experts and their availability in remote areas. Thus, in Brazil,
certain types of skin cancer, such as basal cell cancer (BCC)
and squamous cell cancer (SCC), are usually diagnosed at
advanced stages [4].
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Figure 1: Proposed method. We first train StyleGAN [9] on
unlabeled data to generate high quality skin cancer images
which are semantically similar to the unlabeled training
dataset. Then, we train a feature encoder via self-supervised
learning. At last, a linear classifier is attached to the feature
encoder to test the performance of skin cancer classification
on the scarce labeled data.

Teledermatology provides a promising technology for
monitoring skin cancer [5]–[8]. This is mainly attributed to
the accessibility and ubiquity of smartphones. App users can
be diagnosed remotely by a group of dermatology experts
without meeting the dermatologist in-person. Dermatologists
can therefore serve not only their local patients but also
patients far from their working site. Most available mobile
health apps for skin cancer detection utilize machine learning
algorithms which heavily rely on handcrafted features [8].
Currently, deep learning has been widely utilized in medical
image analysis, where features are learned automatically by
neural networks.

Deep learning has achieved great success in general
image recognition tasks [10]–[12], and researchers have also
applied deep learning methods to medical image analysis, in
particular; For example, in lesion classification [13], [14],
lesion detection [15], [16], lesion segmentation [17], [18],
and so on. While the models become deeper and deeper,
a data scarcity issue emerges. Supervised models need
ground truth labels along with image data. For traditional
computer vision tasks, researchers have created publicly
labeled datasets, such as ImageNet [19], Microsoft COCO
[20], and CIFAR-10 [21]. However, collecting and labeling



those data is tedious and expensive. In medical image arenas,
researchers usually collect data from hospitals. But the req-
uisite data processing procedures, such as file categorization,
annotation, and data de-identification, are time-consuming.
Moreover, it requires experts (e.g., extensively trained and
highly paid radiologists or pathologists) to perform meticu-
lous annotations that is even harder or impossible [22]. For
teledermatology and other mobile health technologies, the
data scarcity issue may be even worse due to the lack of
users at the early stage.

With limited labeled data, few-shot learning [23]–[25]
has become popular. In few-shot learning, we are given
some categories where each category only has a limited
number of images. Few-shot learning methods [23]–[25]
utilize the knowledge learned from some base categories
which are different from the given categories. Hence, it is
possible to learn a novel category by showing one or several
images [26]. Few-shot learning has already been successful
in handwritten characters, birds, dogs, and other natural
images [23], [27]. However, it is still difficult to apply the
few-shot learning techniques to medical images because of
the lack of base category data.

Unsupervised learning is a promising approach to reduce
the labelling cost for training deep neural networks [28]–
[32]. Unsupervised learning methods [28]–[31] aim to learn
a useful representation directly from unlabeled data. Then,
the learned representation can be reused for supervised learn-
ing with limited labeled data [30], thus reducing the cost of
data labeling. For traditional computer vision tasks, there are
usually sufficient unlabeled data for self-supervised learning.
However, in clinical practice, medical images with lesions
are anomalies, and are therefore rare and naturally hard to
find and collect. In particular, certain skin cancers, such
as Merkel cell carcinoma, are so rare that it is impossible
to find sufficient data [33]. Therefore, it is still difficult
for medical image tasks to obtain adequate data for self-
supervised learning. Notably, the effectiveness of the learned
representation with self-supervised learning depends on the
size of the unlabeled dataset [31]. It is thus critical to
augment the unlabeled data when the amount of unlabeled
data itself is limited in medical image analysis.

To improve the performance of self-supervised learning
on skin cancer images, we propose to use a Generative Ad-
versarial Network (GAN) to augment the unlabeled dataset.
Generative Adversarial Networks have been utilized to create
a range of authentic images [9], [34]–[36], including faces,
cars, landscapes, and so on. Trained on real image datasets,
a GAN can learn to estimate the manifold that represents
the training images. Through training, the learned manifold
and the real image manifold can be practically aligned. In
doing this, GANs can learn both local and global statistics of
the real images from the training dataset, and the generated
images can have similar semantic content to that of real
images. However, it is unclear whether GAN generated

images can be utilized to boost the performance of self-
supervised learning on skin cancer images.

In this paper, we investigate how to leverage GAN gen-
erated skin cancer images to improve the self-supervised
learning performance on skin cancer classification task for
teledermatology (Fig. 1). We first train StyleGAN [9] on
unlabeled data to generate high quality skin cancer images
which are semantically similar to the unlabeled training
dataset. Then, we train a feature encoder via self-supervised
learning using the augmented training dataset which includes
the StyleGAN generated images and the labeled training
images. At last, a linear classifier is attached to the feature
encoder to test the performance of skin cancer classification
on the scarce labeled data.

A. Contributions

In this paper, we propose to use a Generative Adversarial
Network (GAN) to augment training data for self-supervised
learning on skin cancer images. The contributions of this
work can be summarised as follows:
• We propose to use StyleGAN [9] for data augmentation

to boost the self-supervised skin cancer classification
accuracy. To the best of our knowledge, it is the first
time that GAN-based data augmentation is applied
to self-supervised learning algorithms for skin cancer
image classification tasks.

• The self-supervised skin cancer classification accuracy
can be boosted by 11.17% on BCN20000 [37] and
3.07% on HAM10000 [38] after StyleGAN-based data
augmentation.

II. RELATED WORK

Generative Adversarial Networks: The GAN is a
promising image synthesis model. The model consists of two
networks, a generator network and a discriminator network.
Inspired by game theory, those two networks are trained
in an adversarial process where the generator generates
fake but authentic images to fool the discriminator and
the discriminator discriminates between the real and fake
images repeatedly [39]. Conceptually, the training process
can be described as a minmax game, which is formulated
as follows:

min
G

max
D

Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))]

(1)
where G represents the generator, D represents the dis-

criminator, pdata(x) indicates the real data distribution,
and pz(z) indicates the noise vector distribution. While
generating new images, the generator takes in noise vectors z
sampled from distribution pz(z) and maps onto the estimated
image manifold. The training process guarantees that the
estimated image manifold is aligned with the training image
manifold by optimizing this minmax loss, i.e. the adversarial



loss. Ideally, this minmax game has a global optimum
at pg = pdata(x), where pg is implicitly defined by the
generator G while G(z) is the sample when z ∼ pz(z).

Originally, the training process of Generative Adversarial
Networks (GAN) is highly unstable. This makes the opti-
mum point of the training hard to reach. Hence, the gener-
ated images from this pioneering work are blurry and hard
to recognize. Later work [40]–[42] focuses on improving
the loss metrics and training strategies, which improves the
generated image quality. A modified approach, the PGGAN
[35] proposed to train the GAN in a coarse to fine manner.
Starting with low resolution, high resolution layers will be
added and trained after the lower layers. Upon the same
training strategy, StyleGAN [9] added another mapping from
original latent space Z into the W space through a non-
linear mapping network and then merged into the synthesis
network via adaptive instance normalization (AdaIN) at each
convolutional layer [43], [44]. This potentially improves
the representational ability of StyleGAN and allows it to
generate stunningly high resolution images.

In medical image applications, Frid-Adar et al. [45]
utilized DCGAN [46] and ACGAN [47] to generate CT
liver lesion patches and boosted the liver lesion classification
performance. Han et al. [48] proposed to use WGAN [40]
to generate MR images for data augmentation and physician
training. Nie et al. [49] used GAN to predict CT images
from MR images. And, Cao et al. [50] proposed an Auto-
GAN to synthesize missing modality for medical images. In
particular, GAN has been widely used for skin cancer image
generation and purification [51]–[54].

Unsupervised Learning: Unsupervised learning aims at
learning useful representations from unlabeled data. In [28],
Wu et al. try to learn an embedding function by enforcing the
features to be discriminative among individual instances. In
unsupervised contrastive learning, the goal is to learn a good
representation by pulling together positive sample pairs and
pushing apart negative sample pairs. The idea of unsuper-
vised contrastive learning is instantiated via different self-
supervised learning methods [29]–[32], [55], [56] in which
the positive sample pairs are crafted by applying different
data augmentations on the same image. In self-supervised
learning, the augmentations of the same image are attracted
and the augmentations of different images are repulsed in
the embedding space. In particular, SimCLR [30] leverages
the composition of data augmentations and large batch sizes
to improve the effectiveness of the representation. MoCo
[31] uses a momentum encoder to improve the consistency
of the queue of negative samples. From an augmented view
of an image, BYOL [32] trains an online network to predict
a target network representation of the same image under a
different augmented view.

In addition to supervised learning approaches, several
groups have applied unsupervised learning to medical image
registration and classification tasks [57]–[59]. For example,

Armanious et al. [60] proposed an unsupervised translation
framework for PET-CT translation and MR motion correc-
tion. Li et al. [61] utilized multi-modal data for retinal dis-
ease diagnosis via self-supervised learning. In particular for
skin cancer images, [62]–[64] used self-supervised learning
for skin cancer classification tasks.

Traditional Data Augmentation: Data augmentation
is a traditional approach to improve model generality.
Common methods include cropping, rotation, occlusion,
flipping, shearing, zooming in/out, image blurring, and
changing brightness or contrast. In supervised learning,
traditional augmentation methods have been widely utilized
[65]. But the performance improvement is limited since
those elementary image operations do not introduce much
variety to the training data. Recently, GAN-based data
augmentation methods have been widely utilized. Shin et
al. [66] used GAN-based data augmentation to improve the
performance of tumor segmentation in brain MRI. Lim et
al. [67] proposed an adversarial autoencoder to augment
the data for unsupervised anomaly detection. Waheed et al.
[68] proposed CovidGAN to enhance the performance of
CNN for COVID-19 detection.

Our proposed method aims to utilize GAN generated
skin cancer images to augment the training data for self-
supervised learning. Unlike [51]–[54], which mainly aim at
skin cancer image generation, and [62]–[64], which mainly
focus on the unsupervised learning for skin cancer images,
our proposed method leverages the advantages of both meth-
ods and improves the performance of the self-supervised
learning.

III. GAN AUGMENTATION FOR SELF-SUPERVISED
LEARNING ON SKIN CANCER IMAGES

In this paper, we propose to utilize Generative Adversarial
Networks (GANs) to generate synthetic unlabeled data,
which is then used for self-supervised learning of skin cancer
images. For traditional computer vision tasks, unlabeled data
is easy to collect. However, for medical image analysis, even
unlabeled data is scarce, particularly for some rare diseases.
Our proposed approach allows self-supervised learning on a
limited number of unlabeled data. The self-supervised pre-
trained model can be further utilized to boost performance
on skin cancer image classification.

A. Self-supervised learning on skin cancer images

It is infeasible to train deep neural networks with a limited
number of labeled skin cancer images, so we employed
self-supervised learning to pretrain the model on unlabeled
images. In self-supervised learning, the goal is to learn a
useful representation directly from unlabeled data. Several
factors influence the success of self-supervised learning: the
amount of unlabeled data [31], the training batch size [30],
and the composition of data augmentation operations [30]. In



contrast to natural images, unlabeled medical images are also
expensive to collect. Therefore, we augment the unlabeled
data with GAN generated synthetic images to increase the
size of the unlabeled dataset. We employ two recently
proposed self-supervised learning methods, SimCLR [30]
and BYOL [32], to pretrain the model on unlabeled images.

1) SimCLR: SimCLR [30] is a recently proposed con-
trastive self-supervised learning method. The goal of Sim-
CLR is to learn representations by attracting differently
augmented views of the same data example in the latent
space. For each image x in a given set of N images, SimCLR
generates two augmented views of x via a stochastic data
augmentation module, resulting in a total of 2N images.
The two differently augmented views of the same image
form a positive pair and the other 2(N − 1) images are
negative samples. SimCLR applies a neural network base
encoder and a projection head to embed each image in a
latent space. The embedded vector is denoted as z. For a
positive pair {zi, zj}, the contrastive loss is written as,

ci,j = − log
exp(zTi zj/τ)∑2N

k=1,k 6=i exp(z
T
i zk/τ)

(2)

where τ is a temperature parameter. Positive pairs will be
attracted in the latent space by minimizing Equation 2.

2) BYOL: More recently, BYOL [32] was proposed as
a self-supervised learning method which does not rely on
negative samples. BYOL learns the representation by itera-
tively predicting one augmented view of a given image via
a differently augmented view of the same image.

Formally, given an image x, BOYL applies stochastic
data augmentation to generate two augmented views x′

and x′′. The online network with parameter θ generates a
representation z′θ based on x′ and the target network with
parameter ξ generates a representation z′′ξ based on x′′.
Then the target network outputs a prediction cθ(z

′
θ) of z′′ξ

with a classifier cθ. The prediction cθ(z
′
θ) and z′′ξ are both

L2-normalized and are optimized to be close via a mean
squared error L′θ,ξ. The loss function is further symmetrized
by feeding x′ to the target network and x′′ to the online
network to obtain L′′θ,ξ. The final loss function is written
as Lθ,ξ = L′θ,ξ + L′′θ,ξ.

The parameter θ of the online network is optimized via
stochastic gradient descent and the parameter ξ of the target
network is updated with a moving average,

θ ← OPT (θ,∇Lθ,ξ) ξ ← γξ + (1− γ)θ (3)

where OPT is an optimizer and ∇Lθ,ξ is the gradient of
the loss function. γ is a hyperparameter which controls the
smoothness of the moving average.

B. Method

In this section, we describe the proposed pipelines of
data augmentation with GAN for self-supervised learning on
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Figure 1. While a traditional generator [30] feeds the latent code
though the input layer only, we first map the input to an in-
termediate latent space W , which then controls the generator
through adaptive instance normalization (AdaIN) at each convo-
lution layer. Gaussian noise is added after each convolution, be-
fore evaluating the nonlinearity. Here “A” stands for a learned
affine transform, and “B” applies learned per-channel scaling fac-
tors to the noise input. The mapping network f consists of 8 lay-
ers and the synthesis network g consists of 18 layers — two for
each resolution (42 � 10242). The output of the last layer is con-
verted to RGB using a separate 1⇥ 1 convolution, similar to Kar-
ras et al. [30]. Our generator has a total of 26.2M trainable param-
eters, compared to 23.1M in the traditional generator.

spaces to 512, and the mapping f is implemented using
an 8-layer MLP, a decision we will analyze in Section 4.1.
Learned affine transformations then specialize w to styles
y = (ys,yb) that control adaptive instance normalization
(AdaIN) [27, 17, 21, 16] operations after each convolution
layer of the synthesis network g. The AdaIN operation is
defined as

AdaIN(xi,y) = ys,i
xi � µ(xi)

�(xi)
+ yb,i, (1)

where each feature map xi is normalized separately, and
then scaled and biased using the corresponding scalar com-
ponents from style y. Thus the dimensionality of y is twice
the number of feature maps on that layer.

Comparing our approach to style transfer, we compute
the spatially invariant style y from vector w instead of an
example image. We choose to reuse the word “style” for
y because similar network architectures are already used
for feedforward style transfer [27], unsupervised image-to-
image translation [28], and domain mixtures [23]. Com-
pared to more general feature transforms [38, 57], AdaIN is
particularly well suited for our purposes due to its efficiency
and compact representation.

Method CelebA-HQ FFHQ
A Baseline Progressive GAN [30] 7.79 8.04
B + Tuning (incl. bilinear up/down) 6.11 5.25
C + Add mapping and styles 5.34 4.85
D + Remove traditional input 5.07 4.88
E + Add noise inputs 5.06 4.42
F + Mixing regularization 5.17 4.40

Table 1. Fréchet inception distance (FID) for various generator de-
signs (lower is better). In this paper we calculate the FIDs using
50,000 images drawn randomly from the training set, and report
the lowest distance encountered over the course of training.

Finally, we provide our generator with a direct means
to generate stochastic detail by introducing explicit noise
inputs. These are single-channel images consisting of un-
correlated Gaussian noise, and we feed a dedicated noise
image to each layer of the synthesis network. The noise
image is broadcasted to all feature maps using learned per-
feature scaling factors and then added to the output of the
corresponding convolution, as illustrated in Figure 1b. The
implications of adding the noise inputs are discussed in Sec-
tions 3.2 and 3.3.

2.1. Quality of generated images
Before studying the properties of our generator, we

demonstrate experimentally that the redesign does not com-
promise image quality but, in fact, improves it considerably.
Table 1 gives Fréchet inception distances (FID) [25] for var-
ious generator architectures in CELEBA-HQ [30] and our
new FFHQ dataset (Appendix A). Results for other datasets
are given in Appendix E. Our baseline configuration (A)
is the Progressive GAN setup of Karras et al. [30], from
which we inherit the networks and all hyperparameters ex-
cept where stated otherwise. We first switch to an improved
baseline (B) by using bilinear up/downsampling operations
[64], longer training, and tuned hyperparameters. A de-
tailed description of training setups and hyperparameters is
included in Appendix C. We then improve this new base-
line further by adding the mapping network and AdaIN op-
erations (C), and make a surprising observation that the net-
work no longer benefits from feeding the latent code into the
first convolution layer. We therefore simplify the architec-
ture by removing the traditional input layer and starting the
image synthesis from a learned 4⇥ 4⇥ 512 constant tensor
(D). We find it quite remarkable that the synthesis network
is able to produce meaningful results even though it receives
input only through the styles that control the AdaIN opera-
tions.

Finally, we introduce the noise inputs (E) that improve
the results further, as well as novel mixing regularization (F)
that decorrelates neighboring styles and enables more fine-
grained control over the generated imagery (Section 3.1).

We evaluate our methods using two different loss func-
tions: for CELEBA-HQ we rely on WGAN-GP [24],
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Figure 2: StyleGAN Architecture. Compared to traditional
GAN models, whose generator directly takes in the latent
code only from the input layer, the generator of StyleGAN
first maps the latent space to an intermediate latent spaceW
using a 8-layer Multilayer Perceptron (MLP). Then it will be
merged into each convolutional layer via adaptive instance
normalization (AdaIN). Gaussian noise will be added after
each convolution before the activation layer. ”A” represents
a learned affine transform and ”B” represents learned per-
channel scaling factors to the noise input. (Figure is reprinted
from [9])

skin cancer images. The pipeline of our proposed method is
shown in Figure.3. First, StyleGAN is trained on the unla-
beled skin cancer images and generates authentic samples
for self-supervised learning. Then we train the feature en-
coder on the augmented dataset including the scarce labeled
images and the generated samples from StyleGAN. At last,
we leverage the self-supervised learned feature encoder on
the skin cancer image classification task on scarce labeled
data.

1) StyleGAN-based Data Augmentation: StyleGAN is
the state-of-the-art high resolution image synthesis model.
The architecture is shown in Figure.2. Unlike a traditional
generator, the latent code z will first be mapped to w in
an intermediate latent space through a non-linear mapping
network, i.e. a 8-layer Multilayer Perceptron (MLP). Then
the learned affine transformations specialize w to styles
y = (ys,yb) that control adaptive instance normalization
(AdaIN) [43], [44] operations after each convolution layer
of the synthesis network. The AdaIN operation is defined as

AdaIN(xi,y) = ys,i
xi − µ(xi)

σ(xi)
+ yb,i (4)



(b) Classification Pipeline

(a) Self-Supervised Learning Pipeline

Figure 3: Proposed Pipeline. (a) Self-supervised learning pipeline: StyleGAN is first trained using the unlabeled samples and
generates authentic skin cancer samples to augment the original training dataset. Then we use self-supervised learning to train
a feature encoder. We generate augmented views for each sample in the augmented dataset. The augmented views are treated
as positive pairs that are trained to pull towards each other. The augmented views from other samples form negative pairs
that are pushed away from each other. (b) Classification pipeline: we leverage the self-supervised trained feature encoder
on the skin cancer image classification with limited labeled data. During training, we attach a fully connected layer as the
classifier. Only the parameters of the classifier are updated.

where xi is the feature map at each layer. It will be
normalized separately, then scaled and biased according to
the scalar components from styles y.

StyleGAN is trained in a progressive manner similar to
PGGAN [35]. The training starts from 4×4 resolution. Then
after previous resolution layers finish training, layers for the
next resolution will be attached for training. In this paper,
the generator network consist of 14 layers – two for each
resolution (42–2562). The final resolution for the generated
image is 256× 256.

Using the same training dataset as the one for self-
supervised learning, we train a StyleGAN. Then, we sam-
ple vectors z in the latent space and pass them into the
StyleGAN generator to generate extra skin cancer images
for data augmentation. Finally, the GAN-generated images
and original training data are combined together for self-
supervised learning. In total, 20, 000 skin cancer images are
generated for data augmentation, augmenting the training
dataset size to 25, 000.

2) Self-supervised learning on skin cancer images: For
SimCLR [30], we use a Resnet18 [10] backbone for feature
encoding. During training, we generate 2 augmented views
for each image via random cropping, random horizontal
flipping, random color jittering, and random grayscaling.
Augmented views from the same image are treated as
positive pairs. In SimCLR, the positive pairs are attracted in
the latent space. While for augmented views from different
images, they are negative pairs, which will be repelled from
each other. Positive pairs augmented from an example skin
cancer image are shown in Figure.4. For BYOL [32], we
generate 2 augmented views by using the same image opera-
tions as SimCLR. And the online network and target network
are optimized iteratively. After self-supervised learning, the
feature encoder is fixed.

For both methods, we use 5, 000 images randomly sub-
sampled from the training dataset (BCN20000 [37] or
HAM10000 [38]) to train the feature encoder. We do not
use all the image from the training dataset because we aim
to simulate the data scarcity problem which widely exists in
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Figure 4: Illustration of the operations for SimCLR augmented views. Here, we show all elementary operations. During
training, each augmented view is generated by randomly combining those operations. In this paper, we generated two
augmented views for self-supervised training.

medical image arenas. Moreover, in this data scarcity setting,
we can test whether the GAN-based data augmentation
is able to boost the self-supervised learning performance.
While using StyleGAN-based data augmentation, we add
the aforementioned 20, 000 generated samples together with
the original training images for self-supervised learning.

3) Classification via StyleGAN-boosted feature encoder
: For the baseline model, we use the Resnet18 [10] feature
encoder trained by self-supervised learning methods as men-
tioned in the previous section using subsampled 5, 000 skin
cancer images. We add one fully connected layer attached
to the feature encoder to classify the skin cancer images.
Then, we finetune this classifier. Samples from this dataset
are shown in Figure.5.

During training, the feature encoder parameters are fixed,
and only the parameters of the last fully connected layer will
be optimized. The training utilizes 80% of the scarce labeled
dataset (5000 images subsampled from BCN20000 [37] or
HAM10000 [38]). The remaining 20% of the dataset is used
for testing. For all the experiments, we repeatedly train the
last fully connected layer for 5 times with different random
seeds and record the mean test accuracy and its standard
deviation.

IV. EXPERIMENTS

In the experiments, we investigate the following questions:
• Does the self-supervised pretraining improve the accu-

racy of the skin cancer classification?
• Does the StyleGAN-based data augmentation improve

the quality of the representation learned by self-
supervised learning?

• Does the quantity of augmented images influence the
improvement of skin cancer classification performance?

A. Evaluation datasets

BCN20000 [37] is the dataset from the International Skin
Imaging Collaboration (ISIC) 2019 Challenge. It contains
25, 331 labeled but unbalanced skin cancer images. 8 skin
cancer types are included: nevus, melanoma, basal cell
carcinoma, seborrheic keratosis, actinic keratosis, squamos
cell carcinoma, dermatofibroma, vascular lesion.

Figure 5: Training samples extracted from BCN20000 [37].
It is clear that the variety of the dataset is large. The
images have various skin tones, dark corners, hairs, and
color patches, which makes the classification extremely hard
without a good feature encoder.

HAM10000 [38] is the dataset from the ISIC 2018
Challenge. It contains 10, 000 skin cancer images, including
actinic keratosis, basal cell carcinoma, benign keratosis,
dermatofibroma, melanocytic nevi, melanoma, and vascular
lesion.

Both datasets are highly imbalanced. The quantity of
each skin cancer category varies a lot. Compared to
HAM10000 [38], BCN20000 [37] is a more challenging
dataset. BCN20000 contains lesions found in hard to diag-
nose locations (nails and mucosa) [37]. Most of the images
would be considered hard-to-diagnose [37].

B. Model training and implementation details

The latent vector for StyleGAN generator has the dimen-
sion of 512. The generator consists of 14 layers – two
for each resolution (42–2562). The discriminator has the
mirrored structure of the generator – also two for each
resolution (2562–42). We use the Adam optimizer [69] with
β1 = 0.0 and β2 = 0.99. The learning rate is set to 0.002.



During training, the images are reshaped to 256× 256.
While training via SimCLR [30], we augment 2 views for

each training image. We train the Resnet18 [10] backbone
for 200 epochs with a batchsize of 256. The learning rate is
set to 0.0003. During training, the images are reshaped to
96× 96.

For the fine tuning, we attach 1 fully connected layer to
the Resnet feature encoder for skin cancer image classifica-
tion. We fix the parameters for the feature encoder and train
the attached fully connected layer 200 epochs. The Adam
optimizer [69] is used with default parameters. The learning
rate is 0.0001.

C. Quantitative Results

1) With vs. Without Self-supervised Pretraining: In or-
der to investigate whether self-supervised learning would
improve the accuracy of the skin cancer classification,
we compare the classification results using the feature
encoder with and without self-supervised pretraining on
both BCN20000 [37] and HAM10000 [38]. For the result
without self-supervised pretraining, we randomly initialize
the Resnet18 feature encoder parameters. While for self-
supervised pretraining, we train a Resnet18 feature encoder
using SimCLR and BYOL. During testing, we attach a fully
connect layer as the classifier and train its parameters with
the feature encoder parameters fixed. Here, both SimCLR
and BYOL are trained using the 5, 000 images subsampled
from BCN20000 [37] or HAM10000 [38]. The comparison
of the skin cancer classification accuracy is shown in Table.I.

BCN20000 HAM10000
w/o pretraining 26.05±1.24% 67.87±0.38%

SimCLR 34.73±1.07% 71.84±0.23%
BYOL 35.71±2.04% 71.37±0.36%

Table I: Classification accuracy w/o vs. w/ self-supervised
pretraining on BCN20000 [37] and HAM10000 [38]

On BCN20000 [37], the classification accuracy is 26.05±
1.24% without self-supervised pretraining. SimCLR and
BYOL achieve 34.73 ± 1.07% and 35.71 ± 2.04% respec-
tively. On HAM10000 [38], the classification accuracy is
67.87±0.38% without self-supervised pretraining. SimCLR
and BYOL achieve 71.84 ± 0.23% and 71.37 ± 0.36%
respectively.

Clearly, with SimCLR and BYOL self-supervised pre-
training, we can improve the skin cancer classification ac-
curacy compared to a random feature encoder (without self-
supervised pretraining). This indicates that self-supervised
learning methods can learn useful representations directly
from unlabeled skin cancer images. It further reveals that it
is possible to utilize the knowledge from unlabeled images
to improve the medical image classification.

2) With vs. Without StyleGAN-based Data Augmentation:
We then investigate whether the StyleGAN-based data aug-
mentation would improve the self-supervised learning per-

formance on the skin cancer classification. First, we train a
Resnet18 network as the feature encoder via self-supervised
learning using 5, 000 skin cancer images subsampled from
BCN20000 [37] or HAM10000 [38]. We utilize both Sim-
CLR and BYOL. For the StyleGAN-based data augmenta-
tion, 20, 000 generated skin cancer images are added into
the training dataset for self-supervised learning, augmenting
the training dataset size to 25, 000. The comparison of the
skin cancer classification accuracy is shown in Table.II.

BCN20000 HAM10000
SimCLR w/o DA 34.73±1.07% 71.84±0.23%
SimCLR w/ DA 38.55±0.44% 72.52±0.25%
BYOL w/o DA 35.71±2.04% 71.37±0.36%
BYOL w/ DA 46.88±0.48% 74.44±0.28%

Table II: Classification accuracy w/o vs. w/ GAN-based Data
Augmentation (DA) on BCN20000 [37] and HAM10000
[38]

For SimCLR, the classification performance is boosted
from 34.73± 1.07% to 38.55± 0.44% on BCN20000 [37],
and the classification performance is boosted from 71.84±
0.23% to 72.52 ± 0.25% on HAM10000 [38]. For BYOL,
the classification performance is boosted from 35.71±2.04%
to 46.88± 0.48% on BCN20000 [37], and the classification
performance is boosted from 71.37±0.36% to 74.44±0.28%
on HAM10000 [38].

Clearly, the StyleGAN-based data augmentation can im-
prove the self-supervised learning performance on the skin
cancer classification. Since we are using the feature en-
coder trained via self-supervised learning methods, it further
indicates that the StyleGAN-based data augmentation can
help self-supervised learning methods learn more useful
representation from unlabeled skin cancer images.

3) Influence of the StyleGAN Augmented Sample Quan-
tity: In this experiment, we vary the quantity of both raw
unlabeled training images and StyleGAN augmented sam-
ples to train self-supervised classification via SimCLR. The
experiment is conducted on BCN20000 [37]. The quantity
of raw unlabeled images is set at 1k, 3k, 5k and 7k.
The quantity of StyleGAN augmented samples is set at
0, 10k and 20k. We investigate the classification accuracy
under different combinations of those two parameters, i.e.
at different augmentation ratio. The augmentation ratio is
defined as follow.

ratio =
Qraw

Qaugmentation
(5)

where Qraw is the quantity of raw unlabeled images
and Qaugmentation is the quantity of StyleGAN augmented
samples. The skin cancer classification accuracy at different
augmentation ratios is shown in Fig.7.

From the bar chart, it is clear that without StyleGAN-
based data augmentation, increasing the raw unlabeled
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Figure 6: Uncurated set of novel images produced by StyleGAN on BCN20000 [37]. Compared to the images from unlabeled
training dataset, the generated samples well maintained the semantic statistics, such as the skin tone, the dark corner of the
image, and some color patches. The generated skin cancer image resolution is 256× 256.
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Figure 7: Classification accuracy on BCN20000 [37] at
different StyleGAN augmented sample quantities.

image quantity can help to improve the self-supervised
classification result. While applying StyleGAN-based data
augmentation, for small raw unlabeled images quantities
where the augmentation ratio is large, such as 1k and
3k, the skin cancer classification accuracy can gain a lot.
However, for larger raw unlabeled images quantities where
the augmentation ratio is small, such as 5k and 7k, the
accuracy boost is reduced.

D. Qualitative Results

1) StyleGAN generated results: After StyleGAN has been
trained, we randomly sample latent codes z, then pass
them to the generator. The generated images are shown in

Figure.6 and Figure.8 for BCN20000 [37] and HAM10000
[38] respectively. From the generated results, it is clear that
the StyleGAN generator has learned the semantic statistics of
the training dataset, such as the skin tone, the dark corner of
the image, and some color patches. Moreover, the generator
can utilize the learned statistics to produce novel images
which do not exist in the real world.

Additionally, it is clear that BCN20000 [37] is a more
challenging dataset since it has more diverse image texture
compared to HAM10000 [38]. Intuitively, this indicates that
compared to HAM10000, images in BCN20000 scatter in
a sparser way on the image manifold such that StyleGAN
based data augmentation can efficiently interpolate between
the image samples. On the contrary, HAM10000 is less di-
verse, i.e., the image samples are locally denser on the image
manifold. Therefore, the performance boost from StyleGAN
based data augmentation is limited on HAM10000.

2) Comparison between PGGAN and StyleGAN: We also
train PGGAN to perform the skin cancer image generation
on BCN20000 [37]. We compare PGGAN generation quality
with StyleGAN generation quality because they both share
the same progressive training manner and have similar
network structures. During training, we use the same number
of epochs with the same optimizer setting and learning
rate. The generation results are randomly picked for both
models and are arranged based on certain semantics. The
comparison is shown in Figure.9.

In general, StyleGAN generation is better than the PG-
GAN generation visually. As indicated by the red arrows,
StyleGAN can generate sharper details for hair, lesion tex-
ture, surrounding skin texture and color patches, while those
details are blurry and unreasonable in PGGAN generated
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Figure 8: Uncurated set of novel images produced by StyleGAN on HAM10000 [38]. The generated skin cancer images are
semantically similar to the unlabeled training samples. It is clear that compared to the images in BCN20000 [37], HAM10000
[38] has less diverse image texture.

PGGAN Generated Samples StyleGAN Generated Samples

Figure 9: PGGAN and StyleGAN skin cancer image generation quality comparison. It is clear that overall StyleGAN
generated skin cancer images have higher visual quality compared to those generated by PGGAN. As indicated by the red
arrows, the skin cancer image details, such as hair, lesion texture, surrounding skin texture and color patches, are maintained
sharper and more meaningful in StyleGAN generated samples.

skin cancer images. This is attributed to the non-linear
mapping network from original latent space Z into the
W space and the merging branch via adaptive instance
normalization (AdaIN) at each convolutional layer [43], [44]
in StyleGAN.

V. DISCUSSION

In this paper, we showed that StyleGAN is capable of
synthesising authentic skin cancer images. This is valu-
able because the ability to generate images like those

presented here helps ameliorate the significant problem of
data scarcity. In particular, for rare skin cancer cases, the
data augmentation benefit is even larger. Thus, the proposed
approach can reduce the cost and human effort required for
teledermatology.

Moreover, other mobile health apps will also suffer data
scarcity issue at the early stage. We can apply the proposed
method to other medical modalities as well. The generated
images can also be used in other domains, such as medical
image perception and medical image analysis.



A second goal of this paper was to test whether StyleGAN
generated samples can be utilized for data augmentation
for self-supervised learning. We found that StyleGAN-based
data augmentation significantly boosted the performance of
self-supervised skin cancer classification. Essentially, using
the generated images helped the classifier better discriminate
skin lesions. In a followup experiment, we found that the
classification performance improvement was most significant
in cases when there were fewer labeled training data. That
is, the benefit of augmenting data is most pronounced when
labeled data are scarce.

Compared to supervised learning, self-supervised learning
only requires a small quantity of labeled data at the final
training stage. Thus, with the gradually growing unlabeled
training data from users, self-supervised learning system is
easier to scale. Moreover, it only requires experts to label a
small amount of key data. Therefore, it is more suitable for
mobile health app systems. With our proposed generative
self-supervised learning, the performance of mobile health
apps could be much improved.

VI. CONCLUSION

In this paper, we trained StyleGAN to augment the train-
ing dataset for self-supervised learning of skin cancer images
for teledermatology. Our model was able to generate authen-
tic skin cancer images, and those images were effective as
a source of augmentation for self-supervised learning. The
benefit of augmenting real datasets with StyleGAN-based
generated data was most prominent when the original dataset
was limited in size. Therefore, when real data are scarce (for
example, in several types of skin cancer including Merkel
cell carcinoma), the augmentation approach presented here
could be highly beneficial. This, in turn, could be very
helpful for mobile health applications.
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